
Resource Standard Metrics 
Baseline Differential Tutorial 

  
RSM Version 6.70+ 
Date: September 24, 2005 
  
RSM Documentation: 
RSM is fully documented in the on-line or local copy of the User's Manual.  Use an Internet 
browser to open the file "manual.htm" from your RSM directory or access the following links via 
the Internet. 
  
RSM User's Manual can be found at:  
C:\Program Files\MSquared\M2 RSM\manual.htm or 
"http://mSquaredTechnologies.com/m2rsm/docs"  
 
Specific use of RSM switches can be found at: 
"http://mSquaredTechnologies.com/m2rsm/docs/reports/switch_menu.htm". 
  
Baseline Differential Scenario: 
  
A new product version (1.2) has just been released and management wants to know the 
differences between version 1.1 and 1.2.  Because the baseline contains many hundreds of files 
spread over many directories, a manual assault on this task is not practical.  Resource Standard 
Metrics can create these metrics in just a few minutes as compared to hours and days of manual 
differentials and assembly of metrics. 
  
Understanding Code Differentials: 
  
A source code file exists between two code baselines in one of three states.  The file may be new 
to the baseline and contribute “new” metrics.  It may be removed from the baseline thus yielding 
“removed” metrics or it may exist in both baselines and contribute to the “differential” metrics. 
  
These three states are used by Resource Standard Metrics for processing baseline differential 
metrics.  Automated tools cannot differentiate "modified" versus "new" lines within a file that 
exists in both baselines.  This analysis requires a historical modification pattern be maintained 
for the entire life time of the file.  Some configuration management tools attempt to perform this 
analysis but their accuracy is not guaranteed.  Consider the following example: 
  

Older File Newer File 
1 void foo(int x) 
2 { 
3   if (x == 10) 
4   { 
5     y = 20; 
6     z = 30; 
7   } 
8 } 

1 void foo(int x) 
2 { 
3   if (x == 10) 
4   { 
5     y = 20; 
6     z = 50; 
7   } 
8 } 



  
Is line 6 new or modified?  The file is not new because it exists in both baselines.  The line 
appears modified but a historical pattern may show it was removed in version 1.1.1 and added 
back in version 1.1.2.  A configuration management differential tool would then determine that 
this change is new based on the historical pattern, but visual analysis would indicate the line is a 
modified line of code. 
  
The subjectivity of this type of analysis can undermine the accuracy of baseline differential 
metrics.   Therefore, Resource Standard Metrics bases its metrics on the state of the file between 
the baselines, where new files create "new" metrics, existing files create "dif" or "mod" metrics, 
and removed files create "rem" metrics.  An RSM metrics differential report is shown in Figure 9 
as an example of these states. 
  
Older versions of RSM (pre 6.00) calculated baseline differentials based on the overall size of 
the baselines rather than line by line differentials.  This size based difference is indicated by the 
use of "mod" within RSM metric reports.  When the -wd option is used for baseline differentials, 
a differential algorithm is used for line by line comparison and the result is indicated by "dif" 
within a RSM report.  Most users will use the (-wd) option for line by line differential based 
metrics. 
  
There are several freely available differential tools which will identify the lines which have 
changed within a file.  Winmerge is an excellent diff tool for Windows and GNU Diff serves as 
the standard for UNIX.  Each of these tools can create differentials between files. However 
neither tool creates metrics for these differentials.   
  
These diff tools use the Longest Common Sequence (LCS) algorithm for determining the 
minimum changes to a file.  These diff tools do not differentiate between the types of lines that 
differ, although Winmerge will indicate colorized syntax for comments versus code lines.  These 
tools show a line by line difference where it is up to the user to apply a visual analysis to 
determine the meaning of the code difference. 
  
The following example illustrates a problem common with most differential tools.  The 
following is a screen shot using Winmerge 2.2.2 where one comment line has been moved.  
GNU Diff and Winmerge indicate these differentials as shown in 1 and 2. 
  



 
Figure 1: Winmerge Showing Differential Semantic Metrics Issue. 

 
Figure 2: Gnu Diff (Cygwin) Showing Semantic Differential Metrics Issue 

In each case, both differential tools show the single line change and Winmerge shows the 
semantic change with colorized syntax.  A metrics tool must be able to account for the type of 
line change when performing baseline differential metrics. 
  
RSM uses differential and semantic analysis to produce fast and accurate baseline differential 
metrics with the -wd option for work files.  The following figure illustrates the results of using 
the (-ws) switch (detailed differentials) when determining differences between two files.  This 
detailed report shows how the two files differ.  In this example the moving of a comment line 
results in the loss of code lines in the older file and the addition of comment lines in the newer 
file.   This result is visually shown with Winmerge in 1 where new comments are shown in green 
and in Figure 3 with blue comment lines added to the new file. 

  
  File:  move1linecomment.c  
  Older                        Newer 
  ------------------------------------  
  Line Number    Diff  Type   Line Number  
            1     =     C     1           
            3     =     C     3           



            4     =     C     4           
            5     =     C     5           
            6     =     C     6           
            7     =     C     7           
                  +     C     9           
                  +     C     10          
                  +     C     11          
                  +     C     12          
                  +     C     13          
            8     =     C     14          
            9     -     L                 
           10     -     N                 
           11     -     G                 
           12     -     G                 
           13     -     N                 
           15     =     C     15          
  ------------------------------------ 

 
Figure 3: RSM Detailed Differential Output using the -ws -wd switches 

  
Figure 3 uses the following notation in RSM baseline differential reports. 
  
 Line number  Physical line in the source file 
 =   Lines are equal in content and type 
 -   Line no longer exists in the newer file 
 +   Line did not previously exist in the older file 
 C   Comment line type 
 G   Logical line of code, ends in semi-colon as a statement 
 N   Non-effective line of code, lines of {, }, (, ) or }; 
 L   Line of Code where it is not logical or non-effective 
  



 LOC   Lines of Code = (L + N + G) 
 eLOC   Effective Lines of Code = (L + G) 
 lLOC   Logical Lines of Code = G 
 Comments  = C  
  
RSM established the concept of effective and non-effective lines of code to better represent the 
quantity of work performed by the developer, independent of the code style.  An effective line of 
code or eLOC is any line of code which is not a line of code that contains a standalone brace, 
parenthesis or closing brace and semicolon.   
  
Through years of empirical analysis, eLOC has been shown to best represent the intuitive 
estimation of experienced developers.  RSM reports all three types of metrics LOC, eLOC and 
lLOC so that the end user can choose the form which best meets their requirements. 
  
The following table defines which lines of code are non-effective.  The following metrics by line 
number result. 
  
 LOC  = {1, 2, 3, 4, 5, 6, 7, 8} 
 eLOC  = {1, 3, 5, 6} 
 lLOC  = {5, 6} 
  

Source File Type 
1  void foo(int x) 
2  { 
3    if (x == 10) 
4    { 
5      y = 20; 
6      z = 30; 
7    } 
8  } 

1  Line of Code (L) 
2  Non-Effective LOC (N) 
3  Line of Code (L) 
4  Non-Effective LOC (N) 
5  Logical Line of Code (G) 
6  Logical Line of Code (G) 
7  Non-Effective LOC (N) 
8  Non-Effective LOC (N) 

  
When looking at the report in Figure 3, what happened to line 8 in the new baseline?  RSM can 
ignore white space and blank lines when performing baseline differentials, therefore line 8 was a 
blank line when the comment terminator "*/" has moved to the bottom of the file, line 14.  
Ignoring white space and blank lines creates the most accurate baseline differentials and can be 
set in the rsm.cfg or RSM configuration file. 
  
  
  
Baseline Metrics Differentials with RSM 
  
RSM (version 6.70+) uses the Longest Common Sequence algorithm for processing differentials 
between two files that are less than 10,000 lines in length.  The line length restriction is imposed 
because of memory and time requirements for the O(n2) LCS algorithm.  Each line in the older 
file is compared against every line in the newer file.  When RSM is set to ignore blank lines this 
constraint is hit in very rare instances when a source file is extremely large.  When a file exceeds 
10,000 line LCS limit, RSM will use an O(n) differential algorithm which performs a linear 
look-ahead (LLA) comparison. 
  



The LCS algorithm creates a comparison matrix of the older file versus the newer file.  This 
matrix is built by comparing and scoring each line in the old file to each line in the new file, thus 
O(n2).  As this matrix is kept in memory during the processing of the two files, considerable 
memory and time is required for processing the differential.  The 10,000 line limit is set in the 
RSM configuration file and it is to insure that the 32 memory address limit is not exceeded 
causing system instability.  The comparison matrix is used in conjunction with each work file to 
determine the equality of content and type for a line.  When these conditions match between the 
older and newer file, the line is deemed equivalent.  LCS insures the largest common sequence is 
determined and the minimum difference is the result. 
  
The LLA algorithm was used by RSM before version 6.70 to perform baseline metrics 
differentials.  In versions 6.70+ it serves as the O(n) differential algorithm for extremely large 
(greater tham10,000 line) files.  The LLA algorithm starts at the top of each file and begins a 
comparison by line content and type.  When these conditions are equivalent, the locations in the 
files are incremented.  When a difference occurs, a look-ahead into the newer file is performed to 
determine if a block of code has moved.  If a look-ahead is found and subsequent lines are 
sequential, a block move is determined.  The lines between the last position and the look-ahead 
are determined to be different and the comparison begins at the new look-ahead position.  The 
look-ahead is set to 100 lines in order to determine localized block moves and to maintain a fine 
grained differential between the old and new files. 
  
In general, 99.9% of your source files will fall within the LCS line limit.  The RSM 
configuration file has a setting to show the type of differential algorithm used.  There is also a 
configuration setting to force the use of the LLA algorithm if legacy, RSM (pre-version 6.70) 
compatibility is required. 
  
Step by Step Process to Baseline Differentials 
  
Although this example is Windows centric, the RSM commands apply to Windows, Linux and 
Universal UNIX RSM licensed products.  Under Windows you may choose to use the RSM 
Wizard. 
  
Step 1:  Setup and Test RSM 
 
 Set the environment variable RSMHOME to the install directory of RSM.  This 

simplifies access to RSM from the command line.  You can accomplish this through the 
command shell as shown below or through the [Control Panel] - [System] - [Advanced] - 
[Environment Variables]. 

  
 C:\> set RSMHOME=c:\Program Files\MSquared\M2 RSM 
  
 Alternatively, you may place the RSM install directory in the system path.  When this 

approach is used, the RSM directory must precede any Windows directory as Windows 
includes an unused utility file named rsm.exe. 

  
 C:\> set path=c:\Program Files\MSquared\M2 RSM;%path% 
  



 UNIX users who know the command structure of their shell can use these approaches 
with the corrected shell syntax to achieve RSM install result. 

  
 After setting the path or environment variable, test RSM to insure proper installation and 

license access.  The license number and software maintenance date are shown in the 
RSM program header for every RSM report.   

  
 Important: The "License Number" is required when requesting email support and the 

"Maintenance Date" will indicate if email support is available.  Newer versions of RSM 
can be downloaded and used with current software maintenance.   

  
 Important: If the release date of a version RSM exceeds the maintenance date in your 

license, RSM will only operate in shareware mode.  Maintenance expirations dates must 
be later in time than the release (build) date of the RSM executable.     

  

 
Figure 4: Setup and Test of RSM 

  
Step 2:  Baseline Code Trees 
  
 The baseline tree for this tutorial resides on the C: drive.  Figure 5 illustrates the structure 

of this baseline tree.  A separate directory is used for each baseline and RSM will be used 
to recursively descend each tree and store our metrics results into the directory labeled 
"metrics".  

  



 The example code baseline tree is available for download at: 
“http://msquaredtechnologies.com/m2rsm/docs/tutorials/command_line_differentials/DiffP
roject.zip” 

  
C:\DiffProject ... 

 
Figure 5: Baseline Trees 

If you are using CVS, visual source safe or any other localizing configuration management 
product, the baseline source code tree will reside on your local disk.  ClearCase will require 
setting a "viewspec" to provide access to the baseline source code.  ClearCase operation is 
beyond the scope of this tutorial and we urge you to consult your ClearCase administrator. 

  
Step 3:  Concept of Operation 
  
RSM operates on a set of input source code files and creates an output report.  Input files can be 
assembled via wild card, file list, or recursive descent of a directory tree.  Input files are 
processed depending on the switches and options that are used on the RSM command line.  This 
tutorial will teach the basic command line for creating a work file and how to generate a baseline 
differential metrics report from two work files.   
  
"Work File"  A file which captures the characterization of a set of input files for use in the 

creation of baseline differentials.  Work files are created with the (-w"create ...") 
RSM switch. 

  
Work files capture the metrics from the baseline.  Once captured, the baseline can evolve without 
affecting the metrics captured within the work file.  Two work files can be extracted and 
differentiated to produce a differential report.  This two stage process enables the use of scripts 
for capturing baseline work files at given time intervals without the requirement for generating a 
differential report.  For example:  Each week a script captures the baseline into a work file.  
Work file extraction to form a differential report can be performed on Week 1 to Week 2 or 
Week 1 to Week 4 or any combination of older versus newer baseline work files. 
  
"Work File Extraction" Using the (-w"x ...") RSM switch, two work files can be processed 

to create a differential report. 
  
Two work files and their associated data files can be extracted using the (-w"x...") switch to 
create a differential report.  There are many switches and options that support baseline metrics 
differentials and work files.  The user manual details each option and provides example reports.   

  
Step 4:  Creating a Work File for the Older (historical) and Newer (current) Baseline 
  
A work file captures and instruments a baseline for the purpose of creating baseline differentials.  
Creating a work file from the command line requires several RSM switches.  These switches are 



presented in individual components so that each may be described in detail.  Figure 6 shows the 
command line composition and the expected output from RSM. 
  
C:\DiffProject> 
"The location of the baseline directories" 
  
rsm  
"The Resource Standard Metrics executable accessed via the path or RSMHOME" 
  
-H -O"c:\DiffProject\metrics\workfile_report_baseline_1.1.htm"  
"HTML Mode and the specific output file for baseline 1.1"  
  
-w"create c:\DiffProject\ProjectRelease1.1"  
"Work file creation with the top of the baseline 1.1 tree directory" 
  
-wd  
"Code line differential mode, rather than size differential which is the RSM default mode" 
  
-w"File dat c:\DiffProject\metrics\workfile_baseline_1.1.dat"  
"Specifying a work file name and path for baseline 1.1" 
  
-r"c,h,cpp,java c:\DiffProject\ProjectRelease1.1" 
"Input mode using specific file extensions and directory tree of baseline 1.1" 
  
Cut and Paste: 
rsm -H -O"c:\DiffProject\metrics\workfile_report_baseline_1.1.htm" -w"create 
c:\DiffProject\ProjectRelease1.1" -wd -w"File dat 
c:\DiffProject\metrics\workfile_baseline_1.1.dat" -r"c,h,cpp,java 
c:\DiffProject\ProjectRelease1.1" 
  

 
Figure 6: Create Work File for the Older (Historical) Baseline 

  
The work file process is repeated for the newer baseline.  In our example the baseline is version 
1.2 and this label is used in the directory name of the baseline and in the reports to be created.  
Each command line component is shown below with an explanation.  Figure 7 shows the 
command line composition and the expected output from RSM. 

  
C:\DiffProject> 
"The location of the baseline directories" 
  
rsm  
"The Resource Standard Metrics executable accessed via the path or RSMHOME" 
  
-H -O"c:\DiffProject\metrics\workfile_report_baseline_1.2.htm"  
"HTML Mode and the specific output file for baseline 1.2"  



  
-w"create c:\DiffProject\ProjectRelease1.2"  
"Work file creation with the top of the baseline 1.2 tree directory" 
  
-wd  
"Code line differential mode, rather than size differential which is the RSM default mode" 
  
-w"File dat c:\DiffProject\metrics\workfile_baseline_1.2.dat"  
"Specifying a work file name and path for baseline 1.2" 
  
-r"c,h,cpp,java c:\DiffProject\ProjectRelease1.2" 
"Input mode using specific file extensions and directory tree of baseline 1.2" 
  
  
Cut and Paste: 
rsm -H -O"c:\DiffProject\metrics\workfile_report_baseline_1.2.htm" -w"create 
c:\DiffProject\ProjectRelease1.2" -wd -w"File dat 
c:\DiffProject\metrics\workfile_baseline_1.2.dat" -r"c,h,cpp,java 
c:\DiffProject\ProjectRelease1.2" 

  

 
Figure 7: Creating Work File for the Current (newer) Baseline 

  
Step 5:  Extracting the Work Files to form a Differential Report 
  
A differential report is created by extracting two different work files where one work file is older 
by version and time and one is newer by version and time.  When a baseline version is released, 
RSM can be run to capture a work file of that baseline.  Over time several work files will contain 
differential data for several baselines.  The time difference between the work files can be used to 
extract productivity metrics between the baselines as well as the metric differences between the 
baselines. 
  
The RSM switch (-w"x olderWorkFile.dat, newerWorkFile.dat") instructs RSM the older and 
path/name of the work files to process. Each command line component is shown below with an 
explanation.  Figure 8 shows the command line composition and the expected output from RSM. 
  
C:\DiffProject> 
"The location of the baseline directories" 
  
rsm  
"The Resource Standard Metrics executable accessed via the path or RSMHOME" 
  
-H -O"c:\DiffProject\metrics\diff_report_baseline_1.1_1.2.htm" 
"HTML Mode and the specific output file for the differential of baseline 1.1 to baseline 1.2"  



  
-wd  
"Code line differential mode, rather than size differential which is the RSM default mode" 
  
-w"x c:\DiffProject\metrics\workfile_baseline_1.1.dat,  
c:\DiffProject\metrics\workfile_baseline_1.2.dat" 
"Work file extraction to produce the differential report, the older baseline work file precedes the newer baseline work file and 
they must be separated by a comma" 
  
Cut and paste: 
rsm -H -O"c:\DiffProject\metrics\diff_report_baseline_1.1_1.2.htm" -wd -w"x  
c:\DiffProject\metrics\workfile_baseline_1.1.dat, 
c:\DiffProject\metrics\workfile_baseline_1.2.dat" 
  

 
Figure 8: RSM Work File Extraction Creating a Differential Report 

The differential report is created in HTML format.  An Internet Brower is used to open and read 
the report.  Extremely large baselines can create extremely long differential reports.  RSM has a 
totals only mode (-Tw) which can roll up all metrics to a short report format. The following 
differential report is produced from the provided tutorial code baselines.  This report is line 
numbered for the purpose of discussion within this tutorial. 
  
1            Resource Standard Metrics™ for C, C++, C# and Java  
2                   Version 6.70 - mSquaredTechnologies.com 
3  
4   License Type : Site Multi-Network License - 100 Users  
5   Licensed To  : M Squared Technologies LLC  
6   License No . : ST1001              License Date : Thu Mar 31 06:29:35 2005 
7   Build Date  :  Sep 17 2005     Maintenance Date:  Tue May 01 06:40:29 2007 
8   ©1996-2005 M Squared Technologies™    Run Date : Sat Sep 17 13:48:15 2005 
9   ________________________________________________________________________ 
10 
11  RSM Command Line   : -H -Oc:\DiffProject\metrics\diff_report_baseline_1.1 
12                      _1.2.htm -wd -wxc:\DiffProject\metrics\workfile_base 
13                      line_1.1.dat, c:\DiffProject\metrics\workfile_baseli 
14                      ne_1.2.dat  
15  Configuration File : F:\Program Files\Msquared\M2 RSM\rsm.cfg 
16  Diff Config File   : F:\Program Files\Msquared\M2 RSM\rsm_workdiff.cfg 
17 
18                         ~~ Metrics Differential ~~  
19                          Based On Code Difference  
20                                No Sort Method  
21 
22  Older Work File : c:\DiffProject\metrics\workfile_baseline_1.1.dat  
23  Creation Date   : Sat Sep 17 13:48:07 2005  



24 
25  Newer Work File : c:\DiffProject\metrics\workfile_baseline_1.2.dat  
26  Creation Date   : Sat Sep 17 13:48:13 2005  
27 
28  Work Time Differential Between Files:  
29  Time Delta:             6 Seconds 
30                0:00:00:06 Days:Hrs:Min:Sec 
31 
32  File Metrics Differentials Based on Code Line Diffe rences  
33  State    LOC    eLOC    lLOC Comment   Lines    eLOC% File  
34  ------------------------------------------------------------------------ 
35  New       15       9       6      23      41   100.00 AddFunction.c 
36  Equ        0       0       0       5       5     0.00 ContextLocComment.c 
37  Dif        0       0       0       7       7     0.00 ContextLocComment.c 
38  Equ      155     121      91      50     205     0.00 HTTPSoapClient.java 
39  New       77      53      36      17     115   100.00 HTTPSoapServer.java 
40  Rem      -15      -9      -6     -23     -41  -100.00 LineSwap.c 
41  Equ       25      15      10      37      62     0.00 LongContextBlock.c 
42  Dif        5       3       2       7      12    20.00 LongContextBlock.c 
43  Equ        5       3       2       8      13     0.00 Remove1LineComment.c 
44  Dif        0       0       0       1       1     0.00 Remove1LineComment.c 
45  Equ       10       6       4      16      26     0.00 RemoveFunction.c 
46  Dif        0       0       0       0       0     0.00 RemoveFunction.c 
47  Equ        5       3       2       8      13     0.00 add1linecomment.c 
48  Dif        0       0       0       1       1     0.00 add1linecomment.c 
49  Equ       13       7       6      21      34     0.00 blockmove.c 
50  Dif        2       2       0       2       4    22.22 blockmove.c 
51  Equ        0       0       0       8       8     0.00 move1linecomment.c 
52  Dif        0       0       0       5       5     0.00 move1linecomment.c 
53  ------------------------------------------------------------------------ 
54  Source Metrics Differential Profile Based on Code L ine Differences  
55  State    LOC    eLOC    lLOC Comment   Lines Av .eLOC%   Files  
56  ------------------------------------------------------------------------ 
57  New       92      62      42      40     156   100.00       2 
58  Rem      -15      -9      -6     -23     -41  -100.00       1 
59  Dif        7       5       2      23      30     6.03       7 
60  Equ      213     155     115     153     366     0.00       8 
61 
62  Total Metrics Older Source Files  
63  ------------------------------------ 
64  Files           9 
65  LOC          245 
66  eLOC         175 
67  lLOC         127 
68  Comments     187 
69  Lines         490 
70 
71  Total Metrics Newer Source Files  
72  ------------------------------------ 
73  Files          10 
74  LOC          312 
75  eLOC         222 
76  lLOC         159 
77  Comments     216 
78  Lines         608 
79 
80  Total Metrics Differential From Historic Basis in P ercent %  
81  ------------------------------------ 
82  Files       11.11 % 
83  LOC        27.35 % 
84  eLOC       26.86 % 
85  lLOC       25.20 % 
86  Comments   15.51 % 
87  Lines       24.08 % 



88 
89  ________________________________________________________________________ 
  

Figure 9: RSM Baseline Differential Report 

  

Step 6:  Understanding the Differential Report 

  
The differential report shown in Step 5 starts with the RSM report header, lines 1 through 10.  
The RSM license number is shown on line 6 and the expiration date for software maintenance is 
shown on line 7.  Any version of RSM with a build date prior to the maintenance expiration date 
can be used with your RSM license file rsm.lic. 
  
Lines 11 through 15 display the RSM command line used to create the report.  This information 
can be important if the report had to be reproduced. 
  
Lines 15 and 16 show the configuration files used by RSM for the operation and report 
generation.  These files are in text format and can be opened with a text editor like WordPad.  
They may be in UNIX text format so opening them with the Notepad program is not advised as 
Notepad does not convert UNIX text format to a readable form. 
  
The report title and format are shown in lines 18 to 20.  The differential report can be sorted 
using the -k switch at the command line.  RSM switches are documented in the RSM users 
manual or by using the -hs switch from the command line. 
  
Work file names and creation dates are shown in lines 22 to 26.  These files are the sources for 
the differential metrics files.  The creation date for the older work file should precede the 
creation date for the newer work file, thus creating a position time differential between the work 
files as shown in line 29 and 30.  If the work files were created at the time of completion for the 
baselines then this time differential represents the time required to build the newer baseline.  This 
time can be used with the RSM switch -wp to produce productivity values for the differential 
metrics. 
  
Line 32 begins the differential metrics between the two baselines. 

  
State:  
The state of the file to the newer baseline is shown in column 1 of the report 
  
The "new" type identifies files which are new to the baseline.  New files represent new lines of 
code and metrics to the differential report.  New lines in existing files are presented as "dif" 
metrics because they represent differences between two existing files.  There is no method for a 
differential algorithm to determine new lines in existing files within the baseline. 
  
The "rem" state represents lines and metrics associated with files removed from the newer 
baseline.  They existed in the older baseline but they no longer are present in the new baseline.  
The "rem" state is the opposite of the "new" state. 
  



The state "equ" signifies that a line is equal by content and type between the two baselines.  
Content means the character representation of the line and type represents the line as a comment, 
logical code, non effective code or line of code.   
  
The "dif" type is used to indicate those lines which are different between the two baselines.  
Figure 3 will show "-" and "+" differentials.  When a line is changed between an old and new 
baseline file, the line essentially no longer exists in the newer baseline "-" and appears as a 
different form "+" in the new baseline.  A file with "dif" metrics may have an equal metrics if 
equal lines occur within the file.  If all lines in the file are equal, no "dif" metrics will be present.   
  
Total baseline differential metrics sum up the "+" metrics from each file.  Lines 50 and 51 show 
the differential metrics for the file represented in Figure 3.  The figure shows 8 equal lines and 5 
lines added as comments.  
  
If metrics for both the "-" and "+" changes to the baseline are to be used for the total metric 
differentials, then the following option in the rsm configuration file ("rsm.cfg") is set to "Yes". 
  
# Code differential metrics determine lines that are 
# different in the current baseline compared to the 
# older baseline.  This metric can include 
# lines that are removed from the current baseline. 
Add removed older lines as modified   : Yes 
  
When this setting is used, lines 50 and 51 of the previous report are represented by the following 
results. 
  
State    LOC    eLOC    lLOC Comment   Lines    eLO C% File  
------------------------------------------------------------------------ 
Equ        0       0       0       8       8     0.00 move1linecomment.c 
Dif        5       3       2       5      10   100.00 move1linecomment.c 
  

5 LOC, lines of code represent the code changed in the older baseline 
 1 L - Line of Code (Lines which are not comments) 
 2 N - Non-Effective Lines of Code (Lines of code which are    
  standalone (, ),  {, }, or }; 
 2 G - Logical Lines of Code (Lines ending in a semicolon) 
  

3 eLOC, Effective lines of code are calculated from: 
 1 L - Line of Code (Lines which are not comments) 
 2 G - Logical Lines of Code (Lines ending in a semicolon) 
  

2 lLOC, Logical Lines of Code are calculated from: 
 2 G - Logical Lines of Code (Lines ending in a semicolon) 
  

5 Comment line come from the 5 comments adder to the newer baseline 
  

10 Lines represent the 5 Loc and 5 Comment lines 
  

LOC 
Lines of code are shown which match the state in column 1.  A line of code is any line which is 
not a standalone comment or blank line. 
  



eLOC 
Effective Lines of code are shown which match the state in column 1.  An effective line of code 
is any line of code which is not a line containing solely a brace, parenthesis or closing brace with 
a semicolon. 
  
lLOC 
The logical line of code is also known as the code statement or any line which ends in a 
semicolon, excluding the "for" loop.  These metrics are shown relative the state in column 1. 
  
Comments 
In RSM differential metrics analysis, when a line contains both a comment and line of code it is 
typed as a line of code.  Comment lines are strictly standalone comments as they relate to the file 
state in column 1.  However, in non-differential reports, RSM accounts for both comments and 
code on the same line when calculating metrics, thus producing the highest possible comment 
density metrics. 
  
Code Line    RSM Non-Differential Analysis 
int y = 21; // counter  1 comment line and 1 logical code line 
  
     RSM Differential Analysis 
     1 Logical or G type line 
  
eLOC% 
This metrics represents the degree of change within a file related to effective lines of code.  It is 
calculated by the dif, new or rem eloc of the older and new file.  Removed files differ by -100% 
eLOC, new files differ by +100% eLOC and existing files are calculated by: 
  
 eLOC% = eLOC change in the new file / eLOC in the old file * 100;  
  
Lines 
The lines metrics indicates the number of physical lines relative to the state in column 1.  Lines 
in the differential report can be calculated by the summation of LOC + comments + blanks. 
  
  
Conclusion 
  
There are many RSM switches and options that control RSM reports.  These are as detailed as 
possible in the User's Manual.  There is no substitute for reading the documentation and trying 
the switches to observe their output.  RSM attempts to make the process simple but the many 
switches can be a learning impediment.  Our product support team is ready to provide examples 
for your specific baseline under our software maintenance agreement.  We appreciate any 
feedback on the RSM product, email support@mSquaredTechnologies.com. 
  
  

M2
 


